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Preface

This work represents the outcome of my attempt to
formulate and solve a two spacecraft encounter viewed as 2

differential game. The vehicles are constrained to maneuver

in only two dimensions, but the gravity fField is allowed to
vary as a function of altitude. Much of the work centers
around pseudo linearized equztions of motion.

1 wish to express my appreciation to the faculty members
of the Air Force Institute of Technology who have either
influenced or assisted me in this effort. In particular, I
am indebted to Prof. Gerald M. Anderson for introducing me
to the field of optimization theory and for zuiding my thesis

c€fort.,

Richard H. Woodward

ii




GA/MC/72-7

Contents

Preface ., . . .
List of Figures
List of Tables
List of Symbols
Abstract . . . .
I. Introduction

Background

Problem . . . . .
Current Knowledge
Scope . . . . . .
Assumptions . . .
Approach . . . . .

General Equations . . . . « . . .

Non-linear Equations of Moticn -
Linearized Equations of Motion . . .
Non- linear Separation . . o . . . .
Separation in Linearized Coordinates
Normalized Equations . . . + . . . «
Non-linear Normalization . . . . . .
Linearized Equations . . « . . « . .

bifferential Game Formulation

Non-linear Free-tine TPBVP
Linear Free-time TPBVP , . .
Lincar Fixed-time TPBVP . . . .,

Linear Relative Difference TPBVP .

Validity of Linear App.oxima‘icas

Comparison Technique . . .
Standard End Conditions R
Non-linear Cases . . . . .«
Results . + . . . . . .
Conclusions . . . . . . e

Solutions to the TPBVP's

Fixed-time TPBVP .
Free-time TPBVP




GA/MC/72-7

VI. Pseudo Closed Loop Control Law

Matrix Formulation . .
Development . . . .
Numerical Test . . + .

VII, Conclusions and Recommendations

Conclusions . . .
Recommendations

Bibliography . . & . . . . .
Appendix A Closed Form Costate Solution

Appendix R: Non-linear Trajectories . . . .

Appendix C: Discussion of Computer 3Solutions
. to the TPBVP's . . . . . ¢ . . .

Appendix D: [fransition Matrix Derivation . .

Vita . . .




GA/MC/72-7

Orbital Geometry . .
Non-linear Separation .
Linear Separation . . .

Conparison of Six Non-linear Optimum
Trajectories to the Linear Optimum
Trajectory in the Y1 Relative Difference
Coordinate .« . . o o o o « o « o 4 2 o

Comparison of Six Non-linear Optimunm
Trajectories to the Linear Optimum
Trajectory in the Y2 Relative Difference
Coordinate . . . « v ¢« « « o v ¢ % o o o

Comparison of Six Non-Linear Optimum
Trajectories to the Linear Optimum
Trajectory in the Y. Relative Difference
COOTAINALE v « v o 3 v o v o o o o o o »

Comparison of Six Non-linear Optinum

Trajectories to the Linear Optimum
Trajectory in the Y4 Relative Difference
Coordinate . . « « & v ¢ 4 4 4 o 00 .o

Trajectories Generated from Solutions
to the Fixed-time TPBVP Compared to the
Run 1 Non-linear Optimum Trajectory in
Relative Difference Coordinates . . . .

Trajectories Generated from Solutions

tc the Fixed-time TPBVP Conpared to the
Run 2 Non-linear Optimum Trajectory in
Relative Difference Coordinates . . . .

Trajectories Generated from Solutions
to the Fixed-time TPBYP Coapared to the
Run 3 Non-linear Optimum Trajectory in
Relative Difference Coordinates . . .

Trajectorics Generated from Solutions

to the Fixed-tine TPEVP fompared to the
Run 4 Non-linear Optimum Trajectory in
Relative vifference Coordinates . . . .




GA/MC/72-7
4 L
Q Figure Page
12 Trajectories Generated from Solutions

to the Fixed-time TPBVP Compared to the
Run S Non-linear Optinum Trajectory in
f Relative Difference Coordinates ., . . . . 53

] 13 Trajectorics Generated from Solutions

to the Fixed-time TPBVP Compared to the

Run 6 Non-linear Optimum Trajectory in

Relative Difference Coordinates . . . . . 54

14 Trajectory Generated from Solution to the
Free-time TPBVP Compared to the Run 1
Non-linear Optimum Trajectory in Relative
Diffcrence Coordinates o » . & %« + & ¢ « o S8

¥ 15 Trajectory Generated from Solution to the
' Free-time TPBVP Compared to the Run 2
e Non-linear Optimum Trajectory in Relative
E Difference Coordinates . . . . . . . . . . 59

16 Trajectory Generated from Solution to the
Free-time TPBVP Compared to the Run 3
Non-~linear Optimum Trajectory in Relative
O Difference Coordinates . . . &+ . . « + « « 60

17 Trajectory Generated from Solution to the
Free-time TPBVP Compared to the Run 4
Non-linear Optimum Trajectory in Relative
v Difference Coordinates . . . . . . . . . . 61

18 Trajectory Gencrated from Solution to the
Free-time TPBVP Compared to the Run §
] Non-linear Optimum Trajectory in Relative
ce Difference Coordinates . . . . . . . . . . 62

19 Trajectory Genecrated from Solution to the
L, Frce-tinme TPBVYP Compared to the Run 6 .
‘ Non-linear Optimum Trajectory in Relative o
Difference Coordinates . + . . . . « . . . 63

20 Relationship Between Differences in Y
State at the Original Final Time Te and

. at the Corrected Final Time Te * Atf P 69

21 Optimum Pursuer and Evader Trajectories
in terms of Earth Central Angle (Radians)
and Radius, Non-linear Run 1 . . . ., . . . 87




GA/MC/72-7

0 Figur;‘

22 Optimum Pursuer and Evader Trajectories
in terms of Earth Central Angle (Radians)
and Radius, Non-linear Run 2 . . . . . . .

Optxnum Pursuer and Evader Trajcctories
in terms of Eart! Centrsl Angle {Radians)
and Rad?" ., Non-lineay Xunp 3 . . - . . . .

Sprimu Purseer and Lvader | cjertomiey
in ter s of harti “eotral Aans. Ro4tans)
and Rativs, Ton~-lirear Run 4 . 6ot e e
E; imum Pursuer opi Lvader .7y, 2:tniic:
in term~ ~f Eartn tentval Ang. o (Fadlana)

el
a:f Radivs, Non-l.ucer Run ¢ e e e e

Sptinuz Pur. .er suni Lvader Irajectories
in terms of E.rth cem - (1 Angle -Radians)
and Rad®.s, Non-linear Run 6 . . . . . . .

Time History of Vehiclce Separation
Distance for Optimunm Non-linear
Trajectory Rur 1 . « o+ . . . « . .

Time History of Vehicle Separation
Distance for Optimum Non-linear
Trajectory Run 2 ., . . « ., . . . o

Time History of Vehicle Separation
Distance for Optimum Non-linear
Trajectory Run 3 . . . & « ¢« « & &

Time History of Vehicle Separation
Distance for Op.inmum hon-linear
Trajectory Run 4 . . . . . . . .+ .

Time History of Vehicle Separation
Distance for Optimum Non-lincar
Trajectory Run 5§ . o . . . . . . .

Time History of Vehicle Separation
Distance for Optimum Non-linear
Trajectory Run 6 . . . . . . . . .




GA/MC/72-7

Evader Non-linear End Conditions -

Minimum Separation Distances (NM)




GAfMC/72~7

ist of Symbols

Definition

actnal separation distance between pursuzr
and evader

normalized scparation distance between
pursuer and evader

coefficient matrix of Y state variables
control matrix

Hamiltonian function

cost or payoff function

nass

costates of Y

radius from karth', center

radius of spherical Earth's surface
time

thrust

roT
normalized thrust U x ——y

uvo
velocity of circular orbit at Earth's surface
radial velccity
transverse velocity
state variable for single spacecraft
relative difference state variable

initial, assumed reasurable, state

thrust (control) angle measurcd positive
upward from the local horizontal

angular position of spacecraft in ordital
planc measured 1n the direction of motion
and from some arbitrary fixed reference
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Definitien

costates of x
Earth's gravitational constant
L

\ot
T

characteristic time =

0
initial characteristic time
individual el~aent in transition matrix

transition or fundamental matrix

Superscriats

denctes derivativs with respect to time
denotes derivative with respect to
characteristic time (7)

Subscripts

E denotes evader
f denotes finzl (end) condition

denotes pursuer
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Abstract

This paper considers the problem of developing the
optimum thrust angle programs for 2wo constant wmass, constant
thrust spacecraft engaged in pursuit and evasion in near-
eaTth orbit. The problem is formulated as a differential
gane in which the pursuer attempts to minimize the finsl
separation distance while the evader attempts to maximize it.

The problem is approached by linearizing the equations
of motion about a circular reference orbit st the earth's
surface. The validity of the linearized equations is
verified by comparing a2 linearized trajectory to six non-
linear trajectories. Optimum non-linear trajectories are
generated by backward integration., The fixed-time and
free-time two point boundary value problems are solved for
the linear case. It is found that convergence tc a free-time
solution becomes exceedingly difficult if the flight time is
short.

A pseudo closed loop control law is developed and tested
numerically against two non-optimum evaders. The results of
this contzol law test are promising but further tests ase

warranted due to the limited number of cases considered.
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PURSUIT-EVASION GAMES BETWEEN TWO SPACECRAFT

IN NEAR-EARTH ORBIT

I. Introduction

Background

The advent of viable military zpace systems by poten-
tially agressive foreign powers has raised the possibility
of our country's earth satellites coming under hostile
attack. Such a possibility has prompted a need for an
investigation to determine the optimum methods of avoiding

destruction or capture in the event of such an encounter.

Problen

This study analvzes the pursuit-evasion situation

through the use of differential game theory. The specific
situation investigated is the two dimensional (planar)

probler in near-earth orbit with the final separatiorn dis-
tance between the two vehicles being the serc sum payoff.

Both the fixed and free-time prodblems are discussed.

Current Knowledge

There has been much successful vork over the last
Jdecade using differential games to investigate aircraft
pursuit-evasion problsms. However, there have been but
relatively few attempts to utilize this game technique in
the study of orbital problems. Billik (Ref 2) used differ-
ential games to solve the wminimum energy, fixed-time problem

in an invesse square gravity field. Wong (Ref 4) used the
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same technique to investigate the fixed-time, minimum final

separation, assuming that the encounter took pl.use in a
region where gravity was constant., To date, there apparently
have been no published solutions to the minimum distance,
free-time problex» 1n an inverse square gravity field. The
absence of solutions i1s probably due to the complications
which arise primarily due to the free-time aspect of the

problenm.

Scope

This thesis will consider the minirum distance, fixed
and free-time problems in an inverse square gravity field.
This study will consider only the end game, that is, the
situation after the pursuer has closed te within about 100
nautical miles of the evader and is continuing to close.
This magnitude of distance has been selected as z maximum
range for an on-board radar system. Not considered will be
any action on the part of either vehicle before that situa-
tion is reached, that is, gross rendezvous will not be con-
sidered. Also, this thesis wili consider the formulation of

both open loop and closed loop control laws.

Assumptions

The assumptions to he made follow. Xhere applicadble,
a brief explanation is offered.

1. Free time., The overall objective is to solve the
free-time problem as it is felt that this is a more realistic

sjtuation than constraining the time of game termination,
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However, in the course of obtaining free-time solutions,

fixed-time solutions are a natural stepping stone. The

fixed-time snlutions are also imp-rtant in their own right

and are ucseful for modeling certain scenarios, such as
iimited fuel cases.

2. Inverse square gravity field.

3. Both vehicles thrust continuously. Once either
vehicle discontinued thrusting, the situation could from
that point on no longer be considered a2 two player game. If
the pursuer ceased thrusting, the evader would then have a
simple avoidance problem. If the evader quit thrusting. the
pursuer would have a simple intercept or rendezveus problea.
The latter situation has already received considerable
attention.

4. The thrust magnitude of each vehicle is fixed.

Even with variable thrust engines, the players would find
it most advantageous to use maximum thrust for maximum
control.

§. Control is provided by varying the direction of
thrust.

6. Payoff will be the separation distance at probleam
teraination. For the free-time problem, this will be at
the point of closest approach. The effectiveness of the
pursuer will be re¢iated to how close he can get to the
evader. The evader, on the other hand, wil) desire to maxi-
wize that separation distance.

7. Perfect information. Each vehicle ~iil be aware of
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f

the current state and capabilitier of both vehicles.

8. Fixed mass. This eliminates one area of extreme

complications which could be a study in itself. This assump-

tion is a good approximation when considering low thrust and
re¢latively short burn duratiens. 1In addition, the larger the
vehicl:, the less is the introduced error.

9. No barriers or ill-defined surfaces. That is, it

will be assumed that the solution in the smii! is valid.

Approach

1. Linearize the equations of =motion about a circular
reference orbit.

2. Set up appropriate equations for a differential game
formulation of both the linear and non-linear equations.

3. Apply the necessary conditions for the optimal
minimax solution as dictated by general optimization tech-
niques.

4. Compare an open loop linear trajectory to cpen loop
non-linear trajectories to check the validity cf the
linearized formulation with respect to the end conditions.

S. Solve the linear fixed-tiwme two point boundary
value problem (TPBVP) by using sets of initial conditions
obtained from the open loop non-linear trajectories. This
will allow comparison of the linear and non-linear trajec-
tories with respect to the initial conditions.

6. Extend the TPBVP solution to the free-time case.

7. UDevelop and test a form of a near-optimal closed

control law for the optimal trajectory.
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I1. General Eguations

Non-linear Equations of Motion

Almost any text on dynamics can be consulted for the
general equations for twe dimensional orbital motion. They

are as follows:

T cos a
—== (2)

rs + 2;6 =

Where as shown in Fig. 1, o is measured from the local hori-
zontal. It i, desirable to have these 2quations in terms of
the radial and transverse velocities, \'r and V9 respectively,

where

(3b)

Making use of these velocities, we can replace the

terms in Eqs (1) and (2) involving r, Y, 6 and 8 to yield

(42)

The above are the non-linecar equations of motion.
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Sgacecraft

T

~"“-\L2§al

Horizontal

Earth's Center

Fig. 1. Orbital Geometry.

Linearized Equations of Motion

Linearization of Eqs (3) and (4) yield

Ar = AV
T

AQ . VrAVe . VGAvr . VrVeAr . T cosa
(-] T T rZ n
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3
where now r, Ve and Vr refer to some reference orbit and the

delta quantities refer to deviations from that reference
orbit. Letting the reference orbit be circular allows the

following simplifications:

Usiag the above in Eqs (6) and (7) vields

2

. 2V AV V. “Ar

AV = 88,87 Tsin
T 3 rZ a

. V AV
0" 'r T cos a
Wg»-—5* ==~ (8b)

Equations (5) and (8) are now the linearized equations of

motion.

Non-linear Separation

Figure 2 illustrates the gecmetry involved with
determining the separaticn distunce between two orbital

vehicles, hereafter called a pursuer (P) and an evader (E).
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Earth's Center

.3 Fig. 2. UHon-lirear Separation.
From the law of cosines,
« = T *

2
£ T - 2rErP cos(eP - BE) (9;

Separation in Linearized Coo~dinates

Figure 3 1llastrates the sare geomctry as related to

a rveference orbit, Again from the law of cosines

d2 = (T Ari,)2 + (v + ArE)2 -

- 2{(r + Arp)(r + Arb) cos (AeP - AeE) (10)

By expanding Eq (10) in a2 Taylor series and eliminating
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higher order terms on the assumption that Ar << r, the

following is obtained.

a? . (Ar, - or

2 2 2
+ T (AOP - AOE)

g

Normalized Eguations

It should be noted that the numerical values of pcrameters
such as r and V will differ by several orders of magnitude.
That is, V may he several miles per second while r may be
several thousand miles. Because of this computation that
involves both parameters may result in information being lost
due to a lack of significant digits. To avoid this, it is
desirable to normalize the equations of interest so that all
parareters will be of the same order of magnitude.

This author, like so many before him chose to normalize
the equations with respect to a circular orbit at the sur-
face of a spherical earth. Thus, distances become normalized
by To, the radius of the earth surface orbit, while the
velocities become normalized by vo, the transverse orbital
velocity of that circular orbit.

The use of & circular orbit allows onz to simplify the
gravitational constant . Since y equals the product of any
circular orbit's velocity squared and that eircular orbit's
radius, the use of a circular ordit allows the value of u to

bz replaced by simply unity.
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i
It should immediately be pointed out that the normaliza-

tion is not without its drawback. The unit of time must also
become non-dimensional. Thus, introduce a non-dimensional
characteristic time unit
t
T 2 (12)
0
This will necessitate changing the time derivatives to tau
derivatives by use of the chain rule for differentiation.
a() ,d() de  0d() (13)
dt dt T at
Sinco differentiation with rsspoct to time is indicated
by a2 dot, differentiation with respect to tau will be

denoted by a prime, hence

Non-linear Normalization

Using the aforementioned procedure, it is now possible
to normalize the non-linear equations. First define the

following normalized state variables.
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"3'8 (14c)
Ve
X"’ v; (l‘d)
Then making uve of Eq (13),
xi =X, (152)
Likewise,
dxz . :Q dx2
dt Vo dt
2
.01 [i?_ _ Tsinu]
Vo V0 T r2 m
x‘z 1 T, T sin o
e A R
1 xl VG R
By defining
" . roT_
2
Vo ]

where both T (thrust) and m (mass) remain constant, the last

equation can be written as

~

Y4

- 4+ u sina (15b)
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|

Equations (3b) and (13) yield

X4
' —
xs ™ % {15¢c)
Finally,
X, X
xz s - :1‘ 4+ ucos (154)

Equations (15) now are the normalized, non-linear state
equations. The square of the non-linear separation, Eq "9),

can also oe normalized., Let the result be called Dz.

D" = x 2 - 2x

2
1E * %yp 119 €05 (X3p - Xg)

Linearized Equations

Using the same procedure, it is possible tr normalize
the linear equations, Define the following noraszlized

linear state variables.

bx = v (17a)
av,

bx, = V;_ (17b)

dxy = A0 (17¢)
oy,

bx, = e (174)

13
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Now making use of Eq (13) and the linesr equations, the

state equations can be derived.

Axi = sz

+ u sina

where u is again defined as

Also,

and lastly,

-r V. Ax
Ax':.ﬂ.—z_oucosq

4 rvo

Observation of Eqs (18) yields the conclusion that
considerable simplification could be made if the reference
orbit used for linearizing were identical to the orbit used
for normalizing; i.e., r = To and Ve = VO' Making that very
simplification, the following normalized, linearized state

equations follow:

Axi = sz

Axi = 2Ax4 . Ax1 + u sin a
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Axt = Ar.4 - 8x

3 1

[l -
Ax4 L] sz + ucosa

As tefore, Eq (11) can also be normalized to yield

2 2 2
D™ = (Axlp - AxlE) + (Ax3P - AXSE)

It should be noted here that the state equations,
Eq (19),are only linear in the states. Those equations are
ibt linear in the control angle a. Thus, even though they
will be referred to as linear equations, the reader should
be aware of the non-linearity involved in the control

function.




GA/MC/72-7

I1I. Differential Game Formulation

The formulation of the problems herein follows the
standard pattern described in Bryson and Ho (Rof 2). The
quantity to be minimaxed is the square of the final separa-
tion distance.

In the free-time problem, the final separation distance
will be the minimum separation distance and the final time

will thus cccur at the point of closest approach. This

§eparation distance at the point of closest approach is

the quantity that the pursuer desires to minimize while the
evader wishes to maximize it.

Ir the fixed-time problem, there are no assurances
that the final separation distance wili be the point of
¢losest approach. However, if one would solve a large
number of different fixed time problems, all with the sanme
initial states, the final separation distance of one
particular solution would be less than any of the others.
That one particular fixed-time solution would then also
be the free-time soluticn. Thus, the solution to the
free-time problem is also the solution to one particular
fixed-time problem, Hence, the teciinrique used by this
suthor to solve the free-time problem was simply to find
that particular fixed-time solurion whose final states

corresponded to the point of closest approach.
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For that reason, both the free and fixed-tiae two point

boundary value problems will be presented here in linearized,
normalized form, suitable for numerical solution. In
additior, the non-linsar normalized free-time two point
boundary value problem will also be presented. The main
purpose of the non-linear formulation is to serve as a

comparisen for the linear approximation formulatioms.

Non-1linear Free-time TPBVP

The non-linear state equations, Eqs (15), plus the
range squared expression, Eq (16), form the basis for this
analysis. 3oth the pursuer (P) and evader (E) have identical

state equations.
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_ XaE%4E

4+ K. cos Q
4E X1k E

E
The payocff J becomes the normalized range squared
expression, Eq (16),evaluated at the final time.

2

2
J= Xpe * Xips - X pgRype €05 (X3pe - Xgpe) (23)

The main equation, or Hamiltonian (H), can be formed

by adjoining the costates to the state equations. Thus

2
X4p 1

Ho=dipXop * App [ - =3 ¢ up sin “P]

x
1P 1P

-x.. X 1
_2p74p up cos “PJ
e

x X, X
AE 2E7AE
A . XdE [- ~F - * ug cos a, ]

3E X1E X g

Using the relationship Ai x - %%— ,» the costatc
i

differentia? equations can now be formed.
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1 1.2
7 [‘zp ("49 - x“,) * AspXap - "4?"29"4?]

4p%4p
e

X1p X1p

4p%2p

x

1 2
z [*zs <}4£ - *45‘25‘45]

AaEXag

*iE

P M

Y X1

Also from the main equation, Eq (24), the optimum

thrust zngies can be found. Using the necessary condition

that %ﬂ =0,

)‘PuP sin ap
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From which

That is, either

cos GP

Likewise, it can be shown that
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!
That is, either

[

The decision concerning which signus to use can be made

by considering the sufficiency conditions. These are, for
2

the pursuer Hz > 0 since he is attempting to minimize the
aup R

H

auE

maximize the payoff. Thus, for the pursuer

cost and ‘or the evader < 0 since he is attempting to

a%n
sa

s - xzp“p sin ¢, ~ A, u

P 4P cos &

P P
P
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1
It can be seen that to satisfy the pursuer's sufficiency

condition, Eq (31), that the expressions with the minus
signs, Eqs (28) must be the optimal solutions.

Now, for the evader,

azH = - A, .u_ sina_ - A, u os a
T2 2eYE E 4gYg 0% g
day

in this case, to satisfy the evader's sufficiency
condition, the angle expressions with the plus signs must
be chosen, Eqs (29).

Now, in an actual encounter, the initial states would
be known, but the end states would not be known. The trans-

versality conditions, however, would allow determination of

3J
axf

the costates at the final time from the relation Xf =

These are as follows:

Aipg ® 2[X1pg - Xjpg €08 (Xgpp - Xgped] (33a)

(33b)

2{ 133c)

*1eeSipe SIM (Rype - Xypel]

(33d)

2[x1ge - X pg €08 (Xgpg - X3pe)) (342)
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Agpe = 0 (34b)

Aype = "X pe¥yps SIN (Xgpe - X3pg) (34¢)

Aepg = O (34d)

Since the cost is not a function of the final time, the
transversality condition also gives the fact that H(Tf) = 0,
In addition, since the Hamiltonian, Eq (24), is not an
explicit function of time, then H' = 0 and thus for any

point in time
H(t) = O

Hence, !. must equal zero at the final time 1fg
Evaluating Eq (24) at Te and utilizing the transversality

conditions, Eqs (33) and (34), for the costates yields

0 = Xype*1ef * *2p£%1pPf

- (Xype*1pe * *1pe¥opg) €05 (X3pg = F3gg)

¢ (XypeXepg - X1peXapg) SIM (igpp - X3pg) (36)

For this free-time formulation, the stopping condition
occurs when the vehicles reach the point c¢f closest approach.
More formally, the problem would end when the range rate
between the two vehicles reaches a zerc value. This would

also correspond to the point where the range squared rate
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reeches zero. It has already been shown that the expression

for range squared is

2

2 2
1IE * %1p - Ix p¥pp €08 (x3p - Xgp) (16)

This expression can be differentiated to yield an equation
for range squared rate. Performing the differentiation

yields

2 ,
D7 = 2z pXjp ¢ 2XppX1p - 2X[pX)p €05 (Xgp - X3p)

= 2x3pXip €05 (Xgp - Xgp) ¢ 2xypX)pX3p Sin (x5 - Xgp)

- 2’15‘1?*35 sin (x3P - xSE) (37)

Substituting the appropriate state equations, Eqs (1S), for

the primed quantities in Eq (37) yields

Dz' 2x + 2x

261 2p%1p - 2Xgp%pp €05 (X3p - Xgp)

ZxIEx2P cos (xsp - xsE) + lesde sin (xSP - xSE)

2x sin (x3P - x

1P*4E 3g)

2xppX g * XppXyp - (Xpp%yp * X)gXpp) €05 (x5p - X5g)

(xygXgp = X1pXag) sin (xgp = 25.)] (38)
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Note that if one sets Eq (38) equal to zero at the

final tine to form the appropriate stopping condition, the

result is identically equal to the final iHamiltonian

Thus, the stopping condition actually

expression, Eq (36)!

yields no additional information.

Thus, the non-linear, normalized, free-time two point

boundary value problem consists of the state equations,

Eqs (21) and (22), the costate equations, Eqs (25) and (26),

the payoff, Eq (23), the Hamiltonian, Eq (24), the optimum

control angles, Eqs (28) and (29), the transversality condi-

tions, Eqs (33), (34) and (35) plus the initial values of

the states.

Linear Free-time TPBVP

The linear state equations, Eqs (19), plus the range

squared expression, Eq (20), form the basis for this formula-

tion. As in the non-linear case, both the pursuer (P) and

evader (E) have identical state equations.

{(3%a)

. ¥ 'Y
: Bxjp = Bxyp

[ ': A‘ip = ZAx‘P . Axlp +u, sin ap (39b)

Ax‘P - Axlp (3%9c)

’szp + u, cos &,
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- O , bxie = 8% (40a)
o Ax:. = 2 i b
4 X5 * Ax4E + AxlE + up sin ag (49b)

S
. Ax'E = AxAE - AxlE (40c)

[
Ax4E sza + u, cos a (40d)

E E

The payoff, J, becomes the normalized, lincarized range

squared expression, Eq (20), evaluat.d 2t the final time:’
Jom By pp - BXipell ¢ (AXgpe = BXgpe)2 (41)
bt § 23 1E£’ 3P£ 3Ef

The Hamiltonian becomes

H = AAlDszp + AAzP(ZAXAP + Ax1P + up sin up)

>

AX”(Ax4P - Ax;p) + M”(-Ax2P + u, cos ap)

+ AXIEAxZE + AAZE(ZAx4E + AxlE + ug sin aE)

- A - Y
+ MzE(Ax4E AxlE) + AA4E( AKZE + up cos uE) (423
‘} Using Eq (42), rthe costate differential equations
become L
AMp = -udyp ¢ By, (433) .
’ O Blgp = -BX,p ¢ A, {43b)

26
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(43c)

(434)

(442}

(44b)

Ay, (44¢)

Alzs -ZAAZE - AASE (444)

The optimum thrust angles can be found from the neces-

sary conditions.

M,
%p

From which,

As before, tither
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Ap

cos a, * - — ~

P -z
NBAgp~ + Brgp

Likawise it can be shown that

wvhere similar choices are available. Either

By
AW
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9 or

AX
sin “E = - 1 S— {481)
AYRIYOR:
2E 4E
: and
aX
cos ap ¥ - ————-1E——~——-: (480b)
2
Bhag * By

The correct signs are determined by the sufficiency
conditions as was done before in Eqs (31} and (32). To
satisfy those conditions, the pursuer's contrcl must be
described by Eqs (46), while the evader's optimum control

0 must be described by Eqs (47).

It is assumed that the initial states are known, but
the end states are not. Using the transversality conditioas,
the expressions for the costates at the final time can be

determined in terms of the end states. These are as folliows:

‘ Aklpf = 2(Axle - AxlEf) (48a)
Alzpf =0 (48b) .
Axspf b 2(Axspf - AxSEf) (48¢c)
B pe = O (48d)
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(49a)

(49b)

{(4%¢)

Bh g e (49d)

As in the non-linear case, neither the cost, Eq (41),
nor the Hamiltonian, Eq (42), is an explicit function of

time. Thus
H(t) = 0 (s

Evaluating the Hamiltonian, Eq (42), at the final time,
utilizing the transversality conditions, Eqs (48), (49) and

(40), yields

0 = (6x)pp = Bx)pe) (BXypp - BXopy)

¢ (Bxgpe - Bxgp J(Bx e = BXjpp - BXype ¢ Bxppe)  (51)

As before, the stopping condition occurs at che poir.
of closest approach which is found by differentiating the
range squared expression, Eq (20), and equating the result
to zero at the final time, Again, the result is identically
equal to Eq (51)}. Thus, as before, the stopping condition

yields no additionai information.
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fhus, the linear, normalized, free-time two point

boundary value problem consists of the state equations,

Eqs (39) and (40), the costate equations, Eqs (43) and (44),
the payoff, Eq (41), the Hamiltonian, Eq (42), the optimum
control angles, Eqs (45) and (47), the transversality condi~
tions, Eqs (48), (49), and (50), plus the initial values of

the states.

Linear Fixed-time TPBVP

The fixed-time problem will be identical to the free-
c¢ime formulation just shown, with the following exceptions.
1. The value of the Hamiltonian will remain equal
to some unknown constant, not necessarily zero. That is,

H{(t) = X.

2. The stopping condition will occur simply when the
final time is reached. This time will not necessarily
ccrrespond to the point of closast approach.

It is important to note that in either linear formula-
tion, the evader's final costates are simply the negative of
the pursuer's final costates as shown by the transversality
conditions, Eqs (48) and (49). This, coupled with the fact
that the costate differential equations are identical for
both the pursuer and evader yield the result that the values
of the evader's costates are always simply the negative of
the pursuer's. That is, AXiP = -AxiE. This, in tuvn,
precipitates the additional result that the control 2ngic is
identical for each vehicle since the expressions in Eqs (46)

and (47) become identical.
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Linear Relative Differcace TPBVP

Because the evader and pursuer have identical state
and costate equations, and because in the linear formulation
the optimum control angles are identical for each vehicle
(aP = uE), it is roczible to formulate the TPBVP in a set of

relative difference equations. Define a sct of new state

variables Yi = Axip - AxiE (i=1... 4). The system of

state equations now reduces to four instead of the original

eight, Making use of Eqs (39) and (40),

= [} - T
Y; AxlP AxIE

Likewise

2Y4 + Y! + Au sin « (52b)

{52c)

' -
¥4 Y2 + Au cos a (524)

where now Au = up - . This ‘erm accounts for the differcnce
be'ween the vehicles' masses and thrusts.
Let.ing P signify the costates in this formulation, the

Hamiltonian now becomes
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h = PIY

+ P2(2Y4 + Y. ¢ Au sin a) + PS(Y4 - Y

2 1 )

+ P4(-Y2 4+ Au cos a)
From this, the costate differential equations beconre

(54a)
(54b)
(54c¢)

(54d)

The value of this optimum thrust angle, o, can be found
by nforcing the necessary and sufficient zonditions for

either the pursuer or evader.

%g = P2 u, cos a - P, u, sina
P

4 P
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cos a+ P, u

4 'E

The resulting

The payoff in relative difference coordinates becenes

2

vy 56)

2
3

Again, the initial values of the state would be known,
but the value at the end condition would be unknown. Thus,
the transversality conditions yield the foliowing values for

the costates at the final condition.

Pre = )¢
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(57¢)

Pyg = 0 (574)

Note that the costate difrerential equations, Eqs (54),
sre completely linear. Those differential equations, with
the aid of the boundary conditions, Eqs (57), can be com-
pletely solved in closed form. A detailed solution is
presented in Appendix A. The final closed for costate
expressions are presented below as a function of the
characteristic time, 1, and the time at the terminal point,

Tf.

4Y1f - 6Y3f(1f - 1) + 4Y3f sin (1'f - 1)

ZYlf cos {Tf - X)

-4Y + 4Y £ cos (rf - 1) + 2Y

3f 3 sin (Tf - 1)

1f

4Y1f - 6\3€ ('rf - 1) - 4Ylf cos (rf - 1)

Bst sin (1‘f - 1) (584d)

Note that to this pcint in this formulation, nothing has
been mentioned concerning stopping conditions since the formu-

lation has Deen independent of what stopping conditaon is
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1
used. The final tinme, Tg, may be given (fixed-time problem)

or mav have to be determined by finding the point of closest
approach (free-time problem). The free-time stopping condi-
tion in relative difference coordinates may be obtained from
the original linear stopping condition, Eq (51). Trams-

forming coordinates yields

0=Y Y +

1f 2¢ MRy (s9)

YSf (Y4f

Again, note that this is the same result one gets by
evaluating the right hand side of the Hamiltonian,Eq (53).

at the final time.
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IV. Validity of Linear Approximations

Since the linearized equations are actually approxima- .
tions that assume the encounter occurs somewhere near a set
of reference conditions, in this case Ty and Vo,
equations will be less valid the further from these refer-

the

ence conditions that the operation takes place. That is,
errors due to the linearization will occur whenever the

spacecrafts' altitudes are different from r_ and whenever

]
their velocities are different from VO' It is desirable to
have some idea of the errors that are involved. In particu-
lar, it should be determined which parameter, spacecraft
altitude or velocity, is more critical in inducing these

errors.

Comparison Technique

To investigate this, a linear trajectory was compared
to scveral non-linear trajectories. Since the costates,
and hence also the control, are functions of the end staces,
it becomes a relatively simple matter to generate optimunm
trajectories by starting at some set of final states and
integrating backward in time.

The linear trajectory is independent of the specific
values of the spacecrafts' altitude or velocity since ine
linear ecquations (in relative difference coordinates) deal
only with the relative differcnces between the pursuer's and
evader's states. The non-lincar cquations do however depend

upon the exact values of the spacecrafts' positions and

37
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v..ocities. Thus, it was possible to compare onc linear

trajectory with several non-linear trajectories by simply
insuring that the initial differences (at the final time for
backward integration) in positions and velocities were the
same in each non-linear run. This allows a determination of
the validity of the linear approximations in various actual

non-linear situations.

Standard End Conditions

In all open loop computer runs the vehicles were
assumed to end at the point of closest approach separated
by only a vertical distance (pursuer above the evader).

This corresponds to both Y and Y in Eq (S9) equalling

2f 3f
zevo. That is, the differences between the two spacecrafts’
radial velocities and angular positions were zero. The

complete set of specific values at the terrinal surface were:

Ylf = 0.006

Y‘f = 0.0252

These values correspond to a terminal situation whereby
the point of closest approach occurs when the pursuer is
roughly 20 nautical miles above the evader and has a tranms-
verse velocity of some 65C feet per second greater than the

evader. The author does not wish to imply that there is
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anything particularly significant about this choice of

parameters., It simply is a reasonable termi-al surface. ..
Any set of well behaved values could have been ured. Indeed,

the author invites the reader to pursue this subject with

another such set.

Non-linear Cases

For the non-linear runs, this author chose to specify
the evader's exact final position and velocity with the Y
puvsiuer’'s being determined by the differences given above;
i.e., approximately 20 NM higher and 650 fps faster. E
Six non-linear runs were made as shown in Table 1. The ‘
first of these selected the evader's final orbit to be
exactly that orbit used as 2 reference; i.e., a circular
orbit at the earth's surface. This case {Run }) was to be i
considered the "best” non-linear situation for the linear AN
approximations.
The next case (Run 2) raised the evader's final altitude f "
by 200 &M, to 3644 NM. but left its final velecity equal to
that of the reference orbit (4.269 KM/sec). This means that ;;
at the final time, the evader was arriving at the perigee of
its erbit. This altitude increasc corresponds to a §$.8%
increase above the reference orbit,
The remaining cases dealt with changing the terminal
velocity of the evader. Runs 3 and 4 decrcased the evader's
terminal velocity by 5.8% of the reference orbit's velocity.

Run 3 assumed the cvader ended at the reference altitude

39
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Table I

Evader Non-linear End Conditions

Altitude Transverse Velocity
NM NM/second

3444 3644 4,021 4,269 4.517
{Ref) (Ref)

X X

X

{3444 NM} while Run 4 assumed it ended at the higher ulti-
tude (3644 NM).

Runs 5 and 6 increased the evader's terminal velocity
Ly ihe same 5.8% of the reference orbit's velocity. Run §
ended at 33144 NM, while Run 6 ended at 3644 NM altitude.
Appena.x B contains t.e actual trajectories generated by
these six non-linear runs. Also presented in Apjpendix B
tre the plots of separation distance as a function of time

for each of the six runs.

Resuits
Figures 4 through 7 show relative differences (unitiess
Y coordinates} of these six runs as a function of time. Also

shown on each figure is the curve obtaincd from the
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Run
Run
Run
Run
Run
Run
Reference Curve fron
Linearized Equatisns

t PO x+> O

R
~1.00 -0.80

T

~0.60 -0.40 -0.20 0.00
TIME TO GO

Fig. 4. Comparison of Six Yon-linear Optimum Trajectories
to the Lincar Optimum Trajectory in the Yl Relative

Difference Coordinates.
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Run
Run
Run
Run
Run
Run
Reference Curve from
Linearized Fquations

L}

-1.90 -0.80 -0.60 -0.40 -0.20 0.00
TIME T0O GG

Fig. S. Conparison of Six Non-linear Optimum Trajectories
tc the Linear Optimum Trajectory in the Yz Relative
Difference Coordinate.
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Run
Run
Run
Run
Run
Run
Reference Curve from

Linearized Equations

1.00  -0.8c  -0.60  -0.40  -0.20  0.00
TIME 108 GO

Fig. 6. Comparison of Six Non-linear Optimum Trajectories
to the Linear Optinum Trajectory in the Y3 Relative
pDifference Coordinate.
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Run
Run
Run
Run
Run
Run
Reference Curve froa
Linearized Equations

| d»Ox+poO

-0.80 -6.50 -0.40 -0.20  0.00
TIME T0 GO

Fig. 7. Comparison of Six Nom-linear Optirum Trajectories
to the Linezz Optimum Trajectory in the Y4 Relative
Difference Coordinate,
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linzarized equations, although that curve is often indis-
tinguishable from Run 1 (best case).

Tihe time to go in the Y trajectory figures is the
characteristic time difference Tf - T. Thus, a time to go
of -1.00 corresponds to about 806 seconds before the final
time.

Note that in all cases except Y3 (which relates the
vehicles' angular position), the runs eventually tend towards
groups based upon like altitude. Thus, Runs 1, 3 and S tend
2s & group to separate from the group composed of Runs 2, 4
and 6. NWithin ecach of the groups, the different velocities
show their effect.

The exception is in ¥ Figure 6, where velocity appears

3
to be the key element. Here, the six runs are clustered in
pairs, each pair representing one velocity. The different
altitudcs are hardly noticeable in each pair. In fact,
although more noticeable, even the different velocities

present only minor errors from the linear case. Indeed, it

will be shown later that nearly ali fixed-time TPBVP solutions

provide excellent agreement in the Y3 parameter.

In all cases, the veclocity increase has an opposite
(but like magnitude) effect from a velocity decrease. It
also can be seen that a velocity decrease (Run 3) from the
referenc? velocity causes the Y farameters to be offset from
the linear, or Run 1, cases in the same direction as the alti-
tude increase, Run 2, Thus the greatest errors in the Y

states are caused by the combination of both a velocity
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decrease and altitude increase, Run 4,

On the other hand, an altitude greater than the
reference orbit (which all real world orbits must be)
induces Y state errors which tend to be offsct by a vehicle
trarsverse velocity greater than the reference velocity. The
amcunt of velocity increase needed to eliminate the altitude
induced error varies for each Y state, For instance, for
time within about 0.75 characteristic units of Tg. Y4

requires only about a one to one percentage difference.

Thus for Y Run 6 which has 2 5.8% altitude increase and a

4:
5.8% velocity increase provides an excellent correspondence
to the linear and base (Run 1) cases. 72. 2s the onposite
extreme, would require considerable more velocity increase,

particularly as time becomes further from 1 As time

£

becomes close to Tes all errors become quite small.

Conclusions

Thus, one sees that the linearized equations are
excellent approximations to all the six runs at times very
close to the final time. Also, the linearized equations are
an excellent approximation ¢c the non-linear situation at
the reference aorbit (Rum 1). Since, for the most part, errors
from increased altitude tend to be offset by increased
velocity, the linearized equations would tend to be most
accurate near the perigees of higher altitude elliptical
orbits ralher than near their apogees. The accuracy would

also decrease for higher altitude circular orbits. The
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amount of eccentricity in the elliptical orbit to completely

eliminate the increased altitude induced errors would vary
for each Y state and would also vary as a function of the

time to geo.
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V. Solutions to the TPBVP's

Fixed-time TPBVP

Chapter IV presented six numerical non-linear trajec-
tories and compared then with respsut to the terminal states,
sgainst the linear trajectory. Thos trajectories were
obtsined by backward integration of the equations of motion.
This chapter will preseat the linear solutions to the fixed-
tire TPBVP's obtained by usinrg as initial conditicns selected
points from each of the six trajectories discussed in Chapter
IV. The linear solutions developed use the analytical
formulation of the fixed-time TPRVP for relative difference
coordinates that was presente in Chapter III.

faving the backward generated, optimum, non-linear solu-
tions for six runs. it was desired to see hov closely the
linearized soiutions tc the TPBVP would approximate these
six cases. Thur, three voints were chosen froo each non-
linear run. The points selected were ac approximately 0.25,
0.5 and 1.0 characteristic time units from the terminal
surface. The set of values of the velative difference
states xt each of these points was used as initial conditions
and input to the fixed-time TPBVP solver. The progran
jterated on a set of sssumed end conditions until it con-
verged to the initial conditions. The linear solutions
generated from each of these points is displayed in Figs.
through 13.

As would be expected, the errors induced from the

linearized solution i1ncrease with time. That is, ecven
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|

-1.00  -0.60  -0.20 ~1.00  -0.60  -0.20
TIME T0 GO TIME TO 60 ‘]

Fig. 9. Trajectories Genecrated from Solutions to the Fixed-
Tine TPBVP Conpared to the Run 2 MNon-linear Optinun
Trajectory in Relative bifference Coordinates,

50
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-1.00  -0.60  -0.20 1.00  -0.60  -0.2C
TiME TO0 GO ‘ TIME TO GOO i

Fig. 16. Trajectorics Generated from Solutions to the Fixcd-
1ime TPBVP Compared to the Hun 3 Non-ainear Qptimun
Trajectory in Relative Difference Coordinatcs.
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-1.00 -0.6C -6.20 “.1.00 -0.60 -0.20
TIME T0 GO TIME TO GO

Fig. 11. Trajeztorics Generated from Soluticns to the Fixed-
time TPBYP Compared to the Run 4 Non-linear Optimum
Trajectory in Relative Difference Coordinates.,

§2
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N

-1.00 -6.60 -6.20 -1.00 -' -rv
TIME TO GO ng'ﬁxgﬁ GOMD

Fig. 12. Trajectories fencrated from Selutions to the Fixed-
time TPBVP Compared to the Rum 5 Non-limear Oplinum
Trajcctery 1n Relative Differcnce Coordinates.
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1.6 -0.60  -0.20 >1.00  -0.60  -0.20
TIME T0 GO TINE TQ GO

Figs 153. Trajectorics Generated from Solutions to the Fixed-
tine TPBVP Conmparcd to th: Run 6 “en-lincar Optinunm
Trajectorv 1n Relatave Difference Coordinates,

sS4
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tnough the linearized solution starts at the same point as

the non-linear solution, the paths tend to diverge with
time. Thus for the most part, the closer the input data is
to zero time to go the more accurate will be the fixed time
solution generated from that point.

Most noticeable is the effect of the different base
altitudes (final evader altitude). Runs 1, 3 and 5 assume a
final evader altitude of 3444 NM. Runs 2, 4 and 6 assume a
final evader altitude of 3644 NM. Three things are readily
noticeable., First, each run in each set appears almost
identical to the other runs in that set. That is, the
results of Run 1 appear almost identical to the resplts of
Run §. Likewise for the other set, Runs 2, 4 and 6.
Secondly, those runs at the higher base altitude (Runs 2, 4
and 6) exhibit substantially greater errors than do those
runs at the lower aititude (Ruas 1, 3 and S5). Thirdly, the
effects of the different base velocities are practically
indistinguishable.

"hus, for the fixed-time solutions, the 2ctual base
altitude is the mo<t important consideration. At this peint
it becomes apparc.t that the further from the linearized
reference altitude one gets, the less accurate will be his
fixed time solution. liere, there appears to be no such
thing as velocity compensation for altitude 2rrors as there
was in Chopter IV. Based on the fixed-time results, it

appears most impertant to linearize the equations of motijon
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about an orbit whose altitude ‘s as close to th; sctual

altitude of operation as possible.

Free-time TPBVP
It was attempted to generate free-time solutions from
each of the same points where fixed-time solutions were
generated in the previous chapter. The free-time problem
did not, of course, specify for what time the input data
corresponded. Instead, the free-time solver selected the
time by driving the firsl raangs squared rate expressicn to
zero (within some limits).
The method used, as discussed before, was actually to 1
solve several fixed time preblems, forcing the final range
squared rate toward zero by usc of a Newton-Raphson technique.
To solve a fixed time problem requires an estimate of the final
time., It was found that the value of this initial estimate
could be rather arbitrary since the program would iterate to
within ar order of magnitude of the correct value within a
very few cycles. However, it was found that the use of a e
smaller initial estimate of time to go greatly decreased the
overall convergence time since the time to perform each cycle
or ltcration i; directly related to the estimate of time
to go. 3
One immedia e result of experimentation was that it was
extreme!y difficult to generate free-time solutions for those 3
data inputs close to zero time to go. That is, of the input '

data from 0,25, 0.5 and 1.0 characteristic time uni-s, only

56
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the data from 1.0 consistently yielded any results. Those
results are displayed in Figs. 14 through 19. The shorter
time problems (0.5 and particularly 0.25) required either
very accurate initial estimates, oxr very lcose convergence
tolerances and lengthy convergence (i.e., computer) time,
Since it was desired to obtain seclutions that did not require
extremely accurate initial estimates and since the lengthy
time required for sclution of the short time to go problers
was greater than the time to go, these particular situations
were not investigated in great detail. Instead, the con-
clusion is made that the initizl free-time soiution must be

generated when the time to go is still reasonably large.

This initial free-time solution could then be updated and

improved upon.

Analysis of the free-time solutions shown in Figs. 14
through 19 yields a conciusicn similar to that for the fixed-
time solutions. Again, the 3ix runs are divisible into two
distinct sets. Each set represents a different final alti-
tude. That is, Runs 1, 3 and 5 all resemble each cther and
Runs 2, 4 and 6 also resemble cach other. Alsc, as in M2
previous chapter, the higher altitude runs (Runs 2, 4 2and 6}
induce greatexr errors than do the runs at thke lower altitude.
To yiela higher altitude runs with swaller errors would
require the convergence tolerances to be made sraller. This,
of course, would increase the time for convergenc-. The
convergence tine for those cases in this situdy varizd from

15% to 25% of the time to gc. Further increcas2s in this
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— Non-linear Cptimum
-0~ TPBYP Solution

“1.08  -0.60 _ -0.20 1.00  -0.s0  -0.20
TIHE TO GO TINE 10 GO

Fig. 14. Trajectory Generated from Solut:ion to the Frce-
time TPBVP Comparcd to the Run 1 Non-linear Optirun
Trajectory ia Relative Difference Coordinates.

58




GA/MC/72-7

— Non-linear Optimunm
0 TPBVP Solution

~

~~——

-1.00 -0.50 -0.20 -1.00 -0.60 ~0.20
TIME T0 GO TINE TO 6C

Fig. 15, Trajccteorv Generated from Solution to the Free-
tise TPBVP CLonmpared to the .lun 2 ‘on-lincar Oontinum
Trajectory in Rclative Mafference Coordinates.
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~Non-linear Optimum
-&-TPBVP Solution

4 ~

“1.00  -0.80  -0.20 ©.1.n0 -0.60  -0.20
TIHE 10 Gu TIME TO GO

Fig. 16. Trajcctory Generated fron Selution to the Free-
time TPIVP Comparcd tc the Run 3 “on-linear Optinun
Trajectory in Relavive Difference Coordinates,
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~ Non-linear Optimun
~-TPBVP Solution

-1.00  -0.60  -D.20 1,00  -D.60  -0.20
TIME TO GO TIMNE T0 GO

-

Fig. 17. Tra)ectorv Comvrated fron Soluticer to the Free-
titwe TPEVT Coapared to the Run 4 Non~iincar Ontinunm
Trajectosy in Relative Difference Coordinates.




GA/MC/72-7

— Non-linear Optimum
—+TPBVP Solution

-1.00  -0.60  -0.20 S1e0  -0.60  -0.20
TIME T0 GG TIME T0 GQ

Fig. 18, Trajectory Generated frem Solvtion to the Free-
time TPBVP Conpared to the Run 5 Non-lincar Oplinun
Trajcctory 3n Relative yfference Conrdinates
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~—Non-linear Optimum
—{-TPBVP Solution

/

-1.00  -0.60  -0.20 ©j.on  -0.60  -0.20
TIME 70 GO TIME TO G4

Fig. 19. Trajcctory Generated from Solution te the Free-
time TPBVP Compared to the Run 6 Non-lincar Optiaum
Trajectory 1a Relrtive Difference Coordinates.
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convergence time would decrease the worth of the solutions.

Again, the differences induced by the velocity varia-
tions are indistinguishable. Thus, the same conclusion is
reached. The major sources of error is due to operating at

an altitude other than the linear reference orbit. This

error may be at leasr partially diminished by reducing the

allowable convergence tolerances, but this increases the
required time for convergence.
Some additional computational details are given in

Appendix C.




GA/MC/72-7

VI. Pseudo Closed Loop Control Law

A closed loop control law would be desirable irn any real
time encounter. That is, you as a player would like to be
able to take advantage of any non-optimal play by your
opponent, thus bettering your final payoff over that which
would develop had you not taken odvantage of your opponent's
error.

Normally, closed loop solutions can be generated for
linear-quadratic problemes., Since the situation treated in
this thesis is pseudo linear, linear in state but non-linear
in controi, it was attempted to develop (or rather approach)
a closed loop solution as closely as possible. This chapter
discusses the development of that pseudo closed loop control

law,

Matrix Formulation

The relative difference state equations, Eqs (52), can

be written in the following ~atrix form:

{¥'1 = [F}{Y] + (6]
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4]
au sin o
0

Au cos aJ

From the F matrix, one can find the fund.mental or
transition matrix, @(Tf,to), for this system of equations.
Appendix E contains that ¢ derivation.

Having the t:ansition matrix, the end states, Yf, can

be written in terms of the present measurable states Yo:

T
gl = [fr 1) Y] + f,z (81, 0] [G() 1T (63)

wiere G(T) contains the control parameters as a function of
charactsristic time tau and the end states. Thus if the
contrcl matrix were zero, the problem would degenerate into
a strictly linear problem 2nd the final states could
immediately be found by using the transition matrix to
operate on the initial states. In fact, a very rough first
approximation of the final states could be made in just that
way, i.e., assuming no control. This rough approximation of
the final states could then be used to provide the control
inputs. This technique would be one of the easiest to
implement, however, 1t would have tc be updated at very
short time increments due to the ervoncous assumption of

zero thrust. Also, this would not be a clesed lcop centrol.
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Developrent
A theoretically more accurate, although more complex
solution can be generated by first solving the free-time
TPBVP thus getting initial estimates of Yf and Ter These
estimates can then be used in the control angle expressicas.
Having a control program it can simultaneously be used to
numerically integrate the equations of motion forward
(assuming both player- play optimally) and to fly'the actual
trajectory. At periodic intervals, direct measurements of
the opponent's actuzl state can be made. These measurements
can be compared with the numerically integrated values. The
differences can be used to update the control program through
the use of rthe differential of Eq (63). That differential
nust allow for changes in both the fina! states and final

time. Thus,

(8Y ] = (901 108Y ) + 2= (100, 1) 11Y, ) T,

f

2 (.v"rf [ft,., 1)) {G(1)}dT}ar
3Tf T HRE ¢ £

3 F
v, (fTO {#(1e, ) IIGT) }dT}[AY ] (64)

where AYO is the difference between the values of the present
state as measured and as calculated from the free-time TPBVP,
AYff is the amount that nmust be added to the present esti.ate

of Yf and Aff is the amount that nust be added to the present
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estimate of rf (which too was determined from the solutiox
to the TPBVP), AYf is the difference between the corrected
Y

at Te and the original value of Yf as is seen in Fig. 20.

£
i These paramaters are related in tne following way:

Ay = AY, + ¥

££ g v Vbt

£

or

AYf = AYff - Y%Atf (65)

Equation (65) can be used to replace AYf in Eq (64).
The result would be an expre-sion in terms of the initial
". known guantities (Y0 and AYO) and the two unknowns AYff and
I Aty Another equation is needed to facilitate determination
: (:) of these unknowns. That other equation can be formed from

the Hzmiltonian which must remain equal to zero at the "new"

:',x final time v, ¢ AT.. Thus All; = 0. Expanding,
‘ 3K M
—— AY . ¢ —— ATt =0
- a{f { awf f
-
aH

But since {rom Eaq (59), 3t ° 0, the above equation becomes:

54

H
5?; AYf = 0 (56)

Substituting Eq (65) into Eq (66) results in the second

equation in terms of AYff and ATft

o %; (AYg - Ypotp) = 0 (67)
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Corrected Y

Original Y

Fig. 20. Relationship Between Differences in Y State
st the Original Final Time Te and at the Corrected

Final Time Tt Arf.

Now, the combination of Eqs {64) and (65) can te solved

for AYff in terms of ATf. Those expressions can then be

used in Lg (67) to provide a scalar cquation relating Arf to

the known initial states. Soiving, the vaiue for AT: san
then be used to provide AYff, the gnantity which must be
added to the original Yf estinate.

These solutions, then, are the corrections that nust be
applied to the original estimate of the final states and
final time. These new estimates can then be used to update

the values of the controi varrables. The updated zontrols
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can then be used until another update is desired. This next
update could be required after some finite amount of time

had passed or after the errors between the measured and

calculated trajectories (AYO), due to the oppenent's non-

optimal play, exceed some specified tolerance. At that
point, Eqs (64), (65) and (67) can then again be solved to
provide another control update.

This rechaique, »f using Eqs (64), (65) and (67) to
update the control by a function of the present measured
state, is the pseudo closed loop control law that this

chapter set out to derive.

Numerical Test

This technique was tested numerically against two non-
optimum evaders. The basic situation was that of 2un 4,
described earlier in this report. In the first case, the
evader's thrust angle was held constant at 180° and in the
second case, it was neld constant at a value of 0°. 1In both
cases it was assumed t(hat the exzct solution to the TPBVP was
known. This of course could not be true in an actual opera-
tion, but served as a test case for this analytical investi-
gation. The exact solution yields the final states that
would exis> if both vehicles had been playing optimally.

For comparison purposes, each non-optimum evader also
was "flown™ against a pursuer who followed his open loop
contrel. The minimum separation distances for these various

tzajectories arec tabulated in Table II,
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Table It
Minimum Separation Distances (NM)

Case Op2n Loop Pseudo Closed Loop
Both Optimum 20.6

Evader Thrust
at 180° 13.4

Evader Thrust
at 0° 13.7

Since in the non-optimum cases it is the evader who is
playing non-optimeslly, the final separation distance should
be less than when both vehicles are playing optimally. In
addition, the pseudo closed loop technique should further
decrease that final separation distance.

Based on these premises, Table 11 appears to be plagued
with & large irconsisteacy in that the correction technique
applied agaiin.t the 0° thrust angle evader increases the
final scparation distance over the open loop runi

Although that incrrase is discourzging, derper analysis

of the resulting numerical test indicates the situation may

not be as bad as it appears. Tkat is, the corrections ATf

and AYff that mere calculated in the courss of the test were
in the correct direction. The magnitude of the AYfE correc-
tion, though, were 20 pgreat too soon, The magnitude of
these corrections being too large caused the pursuer to over
correct his control pregram. This oves correction resulted

in the purcuer beiag taken off his optimum trajectery. By
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the time the control law realized it had over corrected, and
started to recompensate, the scenario had reached the termi-
nal surface (the point of closest approach).

It should be noted that the updating by the control
syster was performed at a set periodic interval of about
every hundred seconds. The entire open loop game lasted some
800 seconds while the closed loop game terninated after only
$70 seconds. Thus, in the latter case, only five updates
were made during the sntire game. Since the errors AYo's
grow tetween updates, those errors may have grown so large
as to invalidate the linearization. To check tha* possibility,
one additional test was run against the 0° evader with an up-
date interval half as iong (i.e., about 50 sezcnds). The
fingl separation distance from that run was only 34.6 NM, a

marked improvement. Thus it 1s felt that the use of a shorter

interval between updates would keep the AYO errors s&aller

and thus dimin:sh the over correction of the control. This
in turn would improve tne final separation distance.

Another possible explanation, more basiz in nature, for
the increased final separation distance is that the situation
investigated in this entire thesis may just not lend itself
to this particular quantitative analysis. That is, the
assumed low thrusts and large nmass (made so ta allow the
original constant mass assumption) coupled with the rather
large value of finzl relative velocity hetween the spacecraft

may simply not allow any great degree «f control.
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To justify keeping the masses constant, the thrust of
the pursuer had been set at 500 1b. and the weight of the
spacecraft had been set at 10,000 it. The final transverse
velocity difference between the spacecraft was set at about
§50 feet per second, to insure the two vehicles vould “pass”

each other. Observing that the vehicles had been thrusting

in the third quadrant (with the evader leading the pursuer)

for some 800 seconds before the final conditicns occur, it
can be shown that at the 1nitiation of the encounter the
relative closing rate would be 650 fps plus an additional
value of up to 1600 fps. Thus, the initial ciosing velocity
between these twe spacecraft is in the neighborhood of

1500 fps.

Thus, with an initial closing rate of that high, it
sppears that the small thrust to weight ratios may simply be
¢00 small to have much pronounced effect upon the final
separation distance.

Hence, the results of this numirical test of the pseudo
closed loop control technique are, unfortunately, i1nconclu-
sive, Hawever, it 1s recommended thot future effort in this
particular area use shorter update intervals and l.rger
thrust to weight ratios, even at the cxpense of the constant

®Rass assunmpticn.,
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VII. Conclusions and Recommendations

Conclusions

A two-dimensional pursuit-evasion encounter between
two constant thrust spacecraft in near-earth orbit has been
formulated at a differential zame with control being provided
by the thrust angle. The spacecraft were given a high
closing velozity to insure the game would go to completion.
The thrust to weight ratios were kept low in order to assunme
constant mass vehicles. The en.ounter took place in an
inverse square gravity field near the earth's surface.

The non-linear equations of mction were linearized about
8 circular reference orbit at the earth's surface. Open loop

solutions were gencrated for both sets of equations backward

in time from selected terminzl states. The lirear open loop

solution compared quite favorably with the non-linear solu-
tions for both vehicles playing optimally. Operation at
zltitudes above the reference orbit induced errors, but these
were partially offset by allowing the velocities to be
greater than the reference orbit.

The linearization of the equations of motion provided
for cioved form solutions to the costate vector. This, in
surn, ai'owed the control (:ihrust anzle) expressions to be
simplified.

Usiag the simplified, or #pproximate, control expres-
sicns, boih the f.ced-time and freoe-tinme two point beundary

vzlue prenienc were so.ved.  As was expected, the errors in
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these lirearized solutions diverge from the actual trajectory
a3 tiae passes. In addition, off reference altitudes weve
agein found to be the greatest centributor of errors, only
now the errors did not seem to be decrzased appreciably by

any conpensating velocity errors.

It was found that fairly accurate free-time solutions

could be generated (within acceptable computer time limits
also)} by requiring only moderate convergence accuraclies.

As the terminal surface wzs approached, it became
ircreasiagly more difficult to oblain a free-time solution.
Thus, 1n an actual cncounter, the init.al free-time solution
should be generated when the time tc go is siiil reasonably
larye. This initial free-time solution could ther be
updated and improved.

A pseudo closed loop control technique was developed
pased upon the fundamental or transition matrix of the
linearized equations of motien. However, its effects upon
the particular encdunter tested were inconclusive, probably
due to the inherent sensitivities of the problem. That is,
the assumed lov thrust to weight ratios coupled with the high
closing velocities appear to diminish the ceffectiveness of

the control.

Reconmendations

Investigatior of this problem has ‘ed this author to
thi#e main recommendations for further study.

First, since 2ltitudc is the greatest contrabutor to

errors in the lincarizad solutions, it would be fruitful to
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linearize the equations of motion about an orbit which more
nearly approximates the altitude of operation. Cnce that i3
done, then the results can be compared with the non-linear
solutions. This should improve the overall uncuracies.

Second, attempt to test 2 control prograw based strictiy

upon the transition matrix. Thus, the present mcasured

states could very quickly be transformed to end states, and
the exact trensformation seclected would be the one which gave
the correct terminal surface, i.e., minimum separation
distance. This method would bs inherently erronecus as the
spplication of the transition matrix requires the assuwmpticn
that no control is to be provided. However, sinca the
process veould be so rapid, it could easily be updated
(repeated) almost instantzneously and might allow for a very
easy control system. Tke purpase of the test would be to
check the accuracy of the technique.

Lastly, siace this author ancounter<d zpparent sensi-
tivity problicms with this ilow thrust to weight, high closing
velocity scenarie, it is recomanended that future investiga-
tors assumd larger thrust :to weizht ratios, even at the

expense of tie constant mass assumptioa.
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o Appendix A

Closed Form Costa*e Solution

f ! The linear relative difference costate differential
equations, Eqs (54), can be solved in closed form, with
the aid of the costate end conditions, Eqs (57), to yield
expressions for the costate vector. The dirferential

equations are repeated below:

Py = -P, v Py (54a)
{ Py = P+ P, {54b)
<:) Py =0 (54¢)

| Py = 2P, - Py (544)

The end conditions have been given as:

P = 2Y (57a)

1f

It ¢7n recadily be seen that PS is a constant.
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P3(T) = 2Y3f (A-1)

Using Cramer's rule on the remaining three equations
and letting D indicate different.ation with respect to

yields:

@3 . D)P, = 3P, (A-2)

The root: of the characteristic equation of the system

sxve 0, ¢+ i. The complementary solution is therefore

Cl + C2 sin 1 + C3 cos T

Now, the forcing function is simply a constant. Since
there is already a constant term in the convlementary func-
tion, one must assume a particular antegral of the form
P = Kr. Putting this assumed solution into the differential
equation Eq (A-2) gives

0+ K= 3P3

1 - cl + 3P31 + Cz sin 1 ¢
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Likewise,

3
(0> + D)P, = 0

which yields

P2 = C4 + C5 sin t + C6 cos T

3 » D)P, =

Again, one must test a particular integral of the form

P = Kt and find that X = 3P Thus,

3

P4 = C7 + 3P31 + C8 sin 1 + C9 cos T (A-5)

These three equations for Pl, Pz and P4 nay v.ow bhe
substituted into the origi=al costate differential equations
to obtain relationships among the nine constants

Cl, Cz, ‘e ng Differentiating Eq (A-2)

Pi = 3P3 + C2 €cos T - C3 sin T
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] -C4 - Cs sin t - c6 cos T + P

3
Equating like terms in Eqs (A-6) and (4-7),

C4 = -2P3

Now differentiating Eq (A-4)

LY - i
P2 C5 cos T C_ sin 1t

6

= C3 cos T + C2 sin 1

+ C7 + 3P3T + C8 sin 1 + C9 cos T

Equating like terms in Eqs (A-8) and (A-9) yields
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It is now possible to write the costate equations in
terms of only three unknown constants:

P1 . c1 + SPsr + Cz sin T c3 cos T (A-10)

(A-11)

P4 = Cl + SPST * 2C2 sin 7 ¢+ 2C3 cos T {A-12)

One can now use the transversality conditions, Eqs (57),

to solve for the three constants. Equating the transversality

conditions to Eqs ‘A-10), (A-11) and (A-12) at t = Te gives

2Ylf s C1 + 3P3rf . C2 sin 1. ¢+ C3 cos T, (A-13)

0= -2P3 - 62 cos T ¢ C3 sin T (A-14)

0= C1 . 3P31f - 2C2 sin 1. ¢ 2C3 cos T (A-15)

Subtract Eq (A-15) from twice Eq (A-13) to yield

4Y = C, + 3P_7

1f 1 3 f

Cl 3 4Ylf - SPstf

Substitute kq {A-16) into Eq (A-15):




GA/MC/72-7

0= 4Y1f - 3Pt + sPstf + 2C2 sin 1, ¢+ 2C, cos T

3f £ 3 f

= 2Y + C,sin 1_ + C_cos 1

if 2 £ 3 £

Solving Eq (A-14) for C

2

2P

3 + C, tan T

cos tf 3 £

Substitute Eq (A-18) into Eq (A-17) to get

c sin2 T

3 £ + C, cos Tf

0= 2‘11f - 2P, tan Te * ——os T T 3

3

Multipiying each term by cos Tes

0= 2Ylf cos T, - 2P3 sin Te ¢ Cs

C3 = 2P3 sin Tf - 2Ylf cos tf
Substitute Eg (A-19) into Eq (A-18):

2P3 sin2 Te
" cos Te * P35 s T, - 2Wyg sin T

s - 2P_ cos tf - 2Y

3 £ sin Te (A-20)

1

One can now usc the values of these constants to form

the following closed form expressions for the costates:
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‘Ylf + 3P3(T-Tf) - 293 cos rf sin 1 - 2Ylf sin Tf sin 7

2P3 sin T, cos T - 2Ylf €65 Tg cos T

4Ylf - SPS(Tf-T) + ZF3 sin(rf-T) - ZY,_f cos (Tf-T)

4Y1f - 6Y3f(1f-1) - 4Y3f sin (Tf~T)

2Ylf cos (Tf-T)

-ZPS + ZP3 cos T cos T + 2Ylf sin Tg cos ¢

2P3 sin Te sin 1 - ZYlf cos T. sin 7T

-2P, + 2P, cos (Tf-T) + 2Y

3 3 sin (Tf-T)

1f

-4Y3£ . 4Y3f cos (Tf-T) + 2Ylf sin (Tf-T)

before,
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Lastly,

= 4Y - 3P31

if + 3Pt - 4P_ cos rf sin T

f 3 3

‘Ylf sin Tf sin T + APS sin 7. cos T - 4Y1f cos'rf cos T

= ‘Ylf - 3P3 (Tf-T) - 4Y1f cos (Tf-T) + 4P

3 sin (Tf-T)

4Ylf - 6Y3f (Tf-T) - 4Ylf cos (Tf-r)

Bst sin (rf-r) (A-23)

Thus, the costates are functions only of the terminal
states and the time to go. This implies that the control
angle, which is a function of only the costates, is also a

function only of the terminal states and the time to go.
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Appendix B

Non-linear Trajectori-s

This appendix displays in Figs. 21 through 26 the actual

optimum non-linear trajectories defined in Chapter IV,
Table I.

In each run, the pursuer (a) Is at a higher alti-

tude than the evader (O) and the pursuer has a greater

final velocity than the evader. The position angle THETA is

measured from the position at the final time.

These trajectories were generated by assuming the final

states and integrating backward in time as discussed in

Chapter IV, Those final states were alsc given in Chapter

IV, Other constants used in these simulations, but which

are only incidental to this study, are listed below:

Vehicles' weight 10,000 1b.

Pursuer's thrust 500 1b.

Evader's thrust 100 1b.

Vehicles?

1sp 300 sec.

It has been assumed that the mass of each vehicle is

constant. Actually, in a real case, mass (m) wouid be 2

changing by the expression

ns= Mo + ;At

where "0 is the initial mass, m is the propellant flow rate

and At the burn time.

The accuracy of the constant mass

assumption lies in the magnitude of the mAt term. The

smaller this term in relation to Mo. che better the assumptioa.

86
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- i Fig. 21, Optinum Pursuer and Evader Trajectories in terms of
' Earth Central Angle (Radians) and Radius, Non-linear Run 1,
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Fig. 22. Optimum Pursuer and Evader Trajectories in terms of
garth Central Angle (Radians) and Radius, Non-linear Run 2.
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Fig. 23. Optimum Pursuer and Evader Trajectories in terms of
Earth Central Angle (Radians) and Radius, Non-linear Run 3.
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Fig. 24. Optimum Pursuer and Evader Trajectoriee inr terms of
Earth Central Angle (Radians) and Radius, Mon-lanear Run 4.
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Figs 25. Optimun Pursuer and Evader Trajcctories in terms of
Earth Central Angle (Radians) and Radius, Non-linear Run 5.
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Fig. 26. Optimum Pursuer and Evader Trajectories in terms of
Earth Central Angle (Radians) and Radius, Non-linear Run 6.
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»

» 10,000 1b/g = 310 1b sec?/ft while

For this study, Mo
o g;: = -0.0517 1b sec/ft for the pursuer and five times
less for the evader. Thus, each hundred seconds of burn time
world decrease the pursver's mass by only 5.17 1b secz/ft, or
roughly only 0.2%. Thus, it is felt that the assumption of
constant mass is justified for this study.

Also shown in this appendix are the values of the non-
linear separatior distance between the vehicles as a function
of time. Again, time is measured relative to the final time.

Thus, time is actually time to go. It can be seen that the

plots are all very similar.
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Fig. 27. Time History of Vehicle Separation Distance for
Optimum Non-linear Trajectory Run 1.
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Fig. 28, Time History of Vechicle Separation Distance for
Optinum Non-linear Trajectory Run 2.
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Fig. 29. Time History of Vehicle Separation Distaace for
Optimun Non-linear Trajectory Run 3.
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Fig. 30. Time History of Vehicle Separation Distance for
Optimum Non-linear Trajectory Run 4.
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Fig. 31. Time History of Vehicle Separation Distance for
Optimum Non-linear Trajectory Run S.
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Fig. 32, Time History of Vehicie Separation Distance feor
Optimum Nom-lincar Tra)ectory Run 6.
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Appendix C

Discussion of Computer Solutions to the TPBVP's

This appendix discusses some of the computational
aspects of the solutions to the TPBVP's discussed in Chapter
V. All computer analysis was done on a CDC 3600 computer

system with a Calcomb pletting device.

Fixed-time Solutions

As was discussed in Chapter V, three points from each
of the six backwvard generated non-linear trazjectories were
used as input data. Please note that as fixed-time solutions
it was assumed that the time to go corresponding to the input
data was known.

Since the program used actually attempts to converge to
the initial (or input) data, the convergence accuracy desired
relates directly to the real computer time required for this
convergence. The runs shown in Chapter V were required to
convarge to within 6.0001 of the input values. CDC 3600
computer processing time corresponded almost directly to
180 seconds per characteristic time unit. That is, to comr-
verge to input from 1.0 characteristic time units from the
terminal state required 180 seconds of computer time. Like-

wise, the data at (T-Tf) = -0.5 took about 90 seconds and

the dats at (t-Tf) = -0.25 took on the order of 45 seconds.

Since onc characteristic time unit i3 equal to about 806

zctual seconds, the above discussion implies that given a
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set of initial conditions, the fixed-time TPBVP would be
solved (converged to within 0.0001 of initial conditions) in
apnroximately 22% of the remaining time to go., This solution
time could be decrcased with the allowance of looser

tolerances, or with the use of special purpose computers.

Free-time Solutions

Since in the free-time problem, the actual time to go
corresponding to the initial conditions was not known, a
somexhat arbitrary value was assumed. A fixed-time solution
was then generated to fit this particular time to go. The
finzl range squared rate for this solution was calculated.
Then the estimate of time to go was iterated upon to drive
the final range squared rate to zero. Hence, as discussed
in Chapter V, the free-time solution simply sclected that
fixed-time solution which corresponded to the minimum final
separation distance.

By viewing the free-time solutions shown in Chapter V,
it wilil be noted that in all cases the solution for time to
go is shorter than the actual time to go. This is because
the initial estimate of time to go was selected to be smaller,
as discussed befcre, than the actual value and the program
then increases that value until the terminal range squared
rate was within scae tolerance of zero. The curves shown

requived that toieramce to be 10'5. A few runs were attcmpted

using 10'6, but the convergence had not occurred after 50% of

the time to go had passed.
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Also important is the desired accuracy with which the

solution meets the given (measured) initial states. Remember
for the fixed-time solutions, the program was forced to meet
these states within 0.0001. Since each free-time solution
actually .nvolves several fixed-time solutions, to keep the
overall convergence time to within acceptable limits this
0.000} tolerance had tc be increased. After several tries,
it was found that 0.002 would work with fairly acceptable
results. That value, then, is the one that was used to

generate the solutions in this study.
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Appendix D

Transition Matrix Derivation

This appendix will derive the individual terms that
comprise the transition matrix ¢ discussed irn Chapter VII.

From the theory of linear equatiens,

$ LT - crm1 e, 1T

with the boundary condition
{¢(1e,1 )] = (1] (0-2,

where I regresents the identity matrix. From Chapter VI, F

has been determined to be a2 constant matrix:

0 1 ¢ o
0 2

-1 ¢

0 -1

Eq (P-1) is equivalent to
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574100 (49 (-4,3-2¢,5)

93-0,5)  (85,-¢5)) (-4335-20,,)

(9337932)  (954%5y) (-d55-205)

(4370420 (9447%4)) (-9443-204)

which is actuclly sixteen equations vwhile Eq (D-2) provides
sixteen boundary conditions at the final time. Since the
third colunn in the right hand side of Eq (D-3) consists only
of zeros, the terms corresponding to those parameters

(¢13, ¢23, 033 and ¢43) are all simply constants that do not
vary wich time, Utilizing the boundary conditions, those

constants are scen to be

Now from Eq (D-3)
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Normaliy, the solution to the above expression would
involve terms like cos T and sin t. However, with the aid
of hindsight and the form of the solutions in Appendix A,

let the solution here be written in terms of rf - T, or At

¢11 All + B, sin AT + C11 cos AT

$1(Tg) = A+ €y

(t) =1 - C~l + B . sin AT ¢ Cu cos At

Y1 1t B

=] + B

sin At cll(cas At - 1) (D-5a)

11

Again from Eq (0-3),
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As before, let

OZl(T) = B, sin At CZI(cos At - 1) (D-Sb)

Again from Eq (D-3),
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A + sin 4t + C cos At ~ 3At

31 31 31

I TUR 1

531 sin At ¢ C31(°°s At - 1) - 3AT

(D-Sc)
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Back to Eq (D-3) for

whose solution is

A4l 4 SiD AT + C4l ces At

At Ca

B sin A1 + C

41 os 81 - 1) (D-S5d)

ale
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Now, beginning the second column of the transition

matrix

%2 = %1

11 ©°s At - Cn sin At

B

1« Cll(cos At - 1)

1

21 ©os ot - C21 sin At

Ba

cos At - sz sin AT
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sin At + c21 cos At

sin At

cos AT - C31 H

2 cos At - C31 sin AT - 2 (D-6e}

2 sin At CSx (cos A1 - 1) - 34z

(D-3f)
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Thus,

C41 (cos At - 1)

%12 * ¢y,

cll Cos AT + 1 « cll cos At - C11

d 2Cll cos AT + 1 - Cl

1

v -0y

.ld -2 cos At + 2

and from Eq (D-62),

%2
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From Eq (D-6b),
011 = 1 - (cos At - 1)

= 2 - cos At

Again from Eq (D-3),

%24

sin At < C21 cos AT + sin At

+ C21 cos AT - C21

2 sin At + 2 C21 cos AT - C21 (D-8)

26 - S

ta

024 2 sin At

Also, from Eq (E-6c),

622 = cos AT

From Eq (E-6d),

’2) = sin At {D-9¢)

Once more using the original expression from Eq (D-3),
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432 * 05

2 sin At + c31 cos A1 + 2 sin Av
+ C31 cos At - C:’l - 3At
4 sin A1 + 2C31 cos At
- C31 - 341
5 -y

€51

sin At - 3AT

634

and from Eq (D-6e),

032 2 cos At - 2

and from Eq (L-6f),

031 2 sin At - 3A7

Now, lastly from Eq (D-3),
LZVIRL PR S

= c‘l cos 8T « C41 cos At - C‘l

= 2C cos AT - C4l

41
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044 2 cos At - 1

and from Eq (D-6g),

‘42

From Eq (D-6h),

041 cos AT - 1

And now, finally, Eqs (D-4), (D-7), (D-9),

(D-13a)

(P-13b)

{D-13¢c)

{b-11) and (Dp-13)

constitute the solution to the transition matrix. Thus

(2 - cos At) (sin Ar)
{sin AT) (cos A7)
(2 sin At - 387) (2 cos At - 2)

(cos AT - 1) {-sin AT)

{2 - 2 cos At)
{2 sin A1)
(4 sin AT -~ 3A71)

{2 cos AT - 1)
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